Notes on Nitrogen in Corn Exeter Ag Breakfast Meeting - April 15 2014

- 1. Ontario N Calculator gives good recommendations based on key factors that describe the field. It provides and average "best" recommendation but can't account for weather, mineralization or N loss other than what traditionally occurs based on soil type.
- 2. Split applications generally have slightly lower total N recommendations to obtain the same yield compared to all-at-planting-time applications.
- 3. Split applications have provided greater profitability compared to pre-plant applications in trials over the last three years; but the gains are modest (\$3-\$9/acre). This occurs when we applied the same amount of total N in both approaches.
- 4. More significant profitability increases may occur if other indicators are used to adjust the "sidedress" portion of N applied. These could be total rainfall, soil nitrate test, plant colour, etc.
- 5. There is some indication that a threshold of 36 PPM in a PSNT on ground that has already received pre-plant broadcast N can be used as a threshold to decide if more N is required at sidedress time (i.e. if a soil already is above 36 ppm on June 10 the recommendation may be to limit sidedress N applications, if it does not reach 36 then sidedress N should be applied at recommended rates). This concept is still being verified in Ontario trials.
- 6. Application techniques (banded, streamer nozzle, flat fan) did not appear to change N volatilization risk from surface applied UAN. Agrotain could reduce N volatilization particularly if the soil was damp on the surface when the UAN was applied.
- 7. Recent research has shown a slight increase in the amount of N taken up by modern hybrids, post-flowering, when compared to older hybrids. The average, from a series of trials was 37% of the total N was taken up by the corn crop after silk emergence.
- 8. Interest in "late" applications of N by high clearance equipment to boost yields is significant. Waist high applications may be a safer place to start (compared to shoulder high or beyond) to reduce the risk that surface applied N may not get into the soil matrix if rainfall is absent post application.
- 9. Questions? greg.stewart1@ontario.ca

Results:

[Imperial Ib/ac	Metric _{kg/ha}
Review of Inpu	ts:	Base Nitrogen Requirement:	28	32
Field Name:	Exeter	Yield Adjustment:	146	164
Region:	Western Ontario	Heat Unit Adjustment:	7	8
Soil Type:	Loam	Previous Crop Adjustment	11	12
Expected Yield:	190 bu/ac	Trevious crop Aujustment.	- 11	- 12
Heat Units:	3,000 CHU-M1s	Price Ratio Adjustment:	- 15	-17
Previous Crop:	Cereals (Straw Removed)			
Expected Corn Price	\$ 4.85 /bu	Total N Recommendation:	155	175
Fertilizer Type:	UAN (28-0-0)	Starter N Deduction:	- 4	- 4
Fertilizer Price:	\$ 400.00 /tonne	Manure Credit Deduction:	- 100	- 112
Nitrogen Price:	\$ 0.65 /lb	Preplant Recommendation:	51	58
Starter Nitrogen:	4 lb/ac			
Manure Credit:	100 lb/ac	Sidedress Recommendation:	41	47

Brought to you by:

Go back...

Print Form...

G. Stewart, OMAF

Starter, 150 lbs N Pre-plant

VERSUS

Starter, 100 lbs N Pre-plant plus 50 lbs Sidedress

Year	Sites	Starter N (average)	Yield Increase Bu/acre	Profit Increase (for 150 Pre-plant) \$/acre	% Wins
2011	5	25	0.3	\$ - 8.77	20
2012	6	19	1.6	\$ -2.90	50
2013	6	11	1.3	\$ -4.28	50

G. Stewart, OMAF

PSNT	Threshold	= 36 PPM
------	-----------	-----------------

# Experimental Field Sites	17
# Correct Decisions:	14
# Correct Decisions That Needed More N:	9
# Correct Decision That Needed No N:	5
# Incorrect Decisions:	3
% Wins	82%
Average UAN Application Date:	May 10
Average PSNT Sampling Date:	June 15
Average Days Between Application and PSNT Sample:	36

G. Stewart, OMAF

Ammonia Loss 3 Weeks After Application for 3 UAN Surface Applications With and Without Agrotain

Source: Pioneer Crop Insights #4, 2014

